山 陰 沿 岸·若 狭 湾 海 域排 出 油 等 防 除 計 画

海 上 保 安 庁

目次

第1編	総則
第1	目的・・・・・・・・・・・・・・・・・・・・・ 1
第 2	対象海域及び名称・・・・・・・・・・・・ 1
第3	基本方針・・・・・・・・・・・・・・・・ 1
第4	計画の修正・・・・・・・・・・・・・・・・・・・ 3
第2編	海域編
第1章	海域の状況
第1	概況・・・・・・・・・・・・・・・・・・・・・ 5
第 2	油等保管施設の状況・・・・・・・・・・・・・・ 5
第3	係留施設の状況・・・・・・・・・・・・・・・ 5
第 4	船舶交通の状況・・・・・・・・・・・・・ 5
第 5	海難の状況・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
第 6	海洋汚染の発生状況・・・・・・・・・・・・・・・・・・・・・・・・・・
第 7	気象・海象の状況・・・・・・・・・・・・・・・・ 6
第8	漁業の状況・・・・・・・・・・・・・・・・・・ 8
第 9	海域の周辺環境・・・・・・・・・・・・・・・・・・・・・・・・
第2章	排出油事故に伴う海洋汚染の想定
第 1	排出油による海洋汚染の想定・・・・・・・・・・・10
	<海洋汚染想定の指針>・・・・・・・・・・・・・ 1 2
第3章	排出油等防除資材等の保有状況と整備目標
第1	排出油等防除資材等の保有状況・・・・・・・・・・・18
第 2	排出油等防除資材等の整備目標・・・・・・・・・・・18
	<整備目標の指針>・・・・・・・・・・・・・・・2 (
第4章	連絡及び情報の交換
第1	連絡・・・・・・・・・・・・・・・・・・・・・ 2 3
第 2	情報の交換・・・・・・・・・・・・・・・・・・・・・23
第3	通信連絡手段の確保・・・・・・・・・・・・・・・23
第 4	連絡及び情報の交換・・・・・・・・・・・・・・・23
第5章	排出油等の防除及び危険の防止
第1	排出油等の防除及び危険の防止・・・・・・・・・・・24
	<排出油等の防除及びこれに伴う危険の防止に関する
	措置等についての基本的な指針>
第 2	排出油等の防除等にあたっての当海域の留意事項・・・・・・3 8
第3編	外洋域における排出油等の防除対策
第1	気象・海象の状況・・・・・・・・・・・・・・・39
第 2	排出油等防除資材等の整備状況・・・・・・・・・・・40
第 3	排出油等の防除及び危険の防止等・・・・・・・・・・ 4 1

第1 目的

この計画は、海洋汚染等及び海上災害の防止に関する法律(昭和45年法律第136号。 以下「海防法」という。)第43条の5に基づき、海上保安庁長官が作成する計画であっ て、油等汚染事件への準備及び対応のための国家的な緊急時計画(平成18年12月8日 閣議決定)の趣旨を踏まえ、海洋汚染等及び海上災害の防止に関する法律施行規則(昭和 46年運輸省令第38号)第37条の16各号に規定する海域において、油等(海防法第 3条第2号の油及び同条第3号の有害液体物質を示す。以下同じ。)が著しく大量に排出 された場合における排出油等の防除及びこれに伴う危険の防止のために必要な事項を定め ることにより、迅速かつ的確な排出油等の防除のための措置の実施を図り、もって海洋環 境の保全並びに人の生命、身体及び財産の保護に資することを目的とする。

第2 対象海域及び名称

排出油等防除計画を定める海域及び名称は、第1図のとおりである。

第3 基本方針

1 排出油等防除計画の作成

計画の作成に当たっては、排出油等防除計画を定める16海域の自然的、社会的、経済的諸事情を踏まえて作成するものとする。

また、海洋汚染を想定する海域は、船舶交通の状況、気象・海象の状況、海難の発生状況等からみて、油等が著しく大量に排出される事故発生の蓋然性の高い海域を設定するものとする。

なお、大規模な排出油等事故あるいは排出油等事故の発生場所によっては、2以上の排出油等防除計画を定める海域に油等汚染が広がることが想定されるため、海域ごとの排出油等防除計画が相互に、かつ、有機的に連携が図られるように運用されるよう措置を講ずるものとする。

2 排出油等防除計画の実施

(1) 平時における対応

イ 関係機関等との連携

計画の実施に当たり、排出油等事故への準備及び対応については、関係行政機関、関係地方公共団体、石油業界、海運業界、鉱山業界、化学業界等各種業界、船舶所有者の団体、漁業関係者その他の官民の関係者(以下「関係機関等」という。)が行う各種の措置が相互の有機的な連携の下に、一層迅速かつ効果的に実施される必要がある。

このため、本庁においては、「油等汚染事件に対する準備及び対応に関する関係 省庁連絡会議」による関係行政機関との連携、管区海上保安本部及び管区海上保安 本部の事務所においては、関係機関等が参画する排出油等の防除に関する協議会の 会員との連携の強化を図るものとする。

ロ 排出油等防除資材等の整備の推進及び使用のための事前調整等

海洋汚染の想定を踏まえて、排出油等事故の初期の段階から迅速かつ効果的な措置が講じられるように、その対応を常に検討しておくものとし、当該海域における排出油等防除資材等については、海上保安庁のほか、それぞれ責務を有する関係機関等との連携のもと、必要な数量及び質が確保されるよう、その整備の推進を図るものとする。

また、各海域の管区海上保安本部及び保安部署等においては、グラブ船、バキュームカー等を含めた排出油等防除資材等の把握を徹底するものとする。

さらに、当該海域において、排出油等の防除のために必要な資材等を投入するためには、必要な資材等を保有している関係機関等と、その調達、輸送方法等について事前に調整を図っておくものとする。

なお、海洋汚染の想定により、当該海域における排出油等防除資材等に不足を生じている場合、又はより迅速に調達可能な場合は、他の海域から調達することも考慮し、関係管区海上保安本部と調達、輸送方法等について事前に調整を図っておくものとする。

ハ 排出油等の防除手法の改善等

排出油等の防除作業は、種々の条件によって、その手法も異なることから、実際の防除活動によって得られた教訓、あるいは訓練を通じて得られた知識等を基に、 防除手法の改善あるいは排出油等防除資材等の開発等の促進を図るものとする。

また、排出油等防除資材等を、迅速かつ的確に海上に展開するためには、支援体制の確保が不可欠であることに、特に留意するものとする。

ニ 独立行政法人海上災害防止センターの活用

独立行政法人海上災害防止センター(以下「センター」という。)の長年にわたって実施してきた海上災害の防止措置並びに海上防災のための措置に関する調査研究及び訓練等の業務から得られた知識・技能を、排出油等の防除に関する協議会等を通じて積極的に活用するものとする。また、関係機関等に対して、センターの訓練施設を使用した訓練への積極的な参加を促進するものとする。

ホ 訓練の実施

各海域に配備されている排出油等防除資材等については、訓練を通じ、その慣熟に努めることが重要である。このため、油等が著しく大量に排出された場合を想定して、関係機関等が一体となって、排出油等防除のための諸活動を訓練することにより、排出油等防除体制の改善強化を図るものとする。

特に、海上保安庁、センター、排出油等の防除に関する協議会、石油業界等が行 う訓練については、相互に密接な連携を図って実施するものとする。

また、訓練の実施に当たっては、船艇、航空機及び排出油等防除資材等の実動を 伴わず、関係主要メンバーが集い、対応計画と運用手続きに則り、対応活動を演じ 及び討議する机上訓練についても積極的に取り組むものとする。

なお、1のなお書きに対応する広域的な訓練についても取り組むものとする。

へ マニュアルの作成

この計画を効果的に推進するために、関係機関等との連携を図りつつ、海域の実

情に応じ具体的な防除活動の実施内容を明記した防除活動マニュアルを作成すると ともに、随時見直しを行い、必要があると認められるときは、その都度これを修正 するものとする。

(2) 発災時における対応

イ 排出油等の防除措置

排出油等の防除措置については、当該排出された油等が積載されていた船舶の船舶所有者等に防除措置義務が課されているものであるということに十分配慮しつつ、関係機関等と連携し、組織的かつ一体的な排出油等の防除体制を確立して、総合的かつ有機的に実施される必要がある。

特に、排出油等事故が閉鎖性海域において発生した場合、又は排出油等が海岸等に漂着した場合は、海岸管理者、漁港管理者、港湾管理者、地方公共団体等との連携が重要となる。

また、排出油等の防除措置の実施にあたっては、環境保全上の配慮を行うとともに、平素から油濁損害賠償に関する法令等の理解に努め、排出油等事故の初期の段階から当該事故に係る保険の加入状況等の把握を行う必要がある。

ロ 排出油等防除資材等の輸送

大規模排出油等事故においては、他の海域を含め、緊急かつ広域的に陸送、海上輸送等により動員することが必要になる場合も想定されるが、海上保安庁及びセンターは、事故発生時には、排出油等防除資材等の動員に際し、必要に応じて警察機関に対して交通上の協力を要請すること等により、迅速に資材等を発災現場に輸送するものとする。

ハ 機動防除隊の活用

大規模な排出油等事故等に迅速かつ的確に対応するために横浜機動防除基地に編成されている機動防除隊を積極的に活用するものとする。

ニ 広報の実施

船舶交通の安全確保、付近住民の人心の安定と秩序の維持、防除活動の円滑な実施等を図るため、必要に応じ関係機関等と連絡調整を行いながら、迅速かつ的確な広報を行うものとする。

(3) 他の計画との関係

この計画は、災害対策基本法(昭和36年法律第223号。以下「災対法」という。)に基づく防災基本計画、防災業務計画及び地域防災計画、環境基本法(平成5年法律第91号)に基づく環境基本計画並びに石油コンビナート等災害防止法(昭和50年法律第84号。以下「石災法」という。)に基づく石油コンビナート等防災計画(以下「コンビナート防災計画」という。)と相まって、総合的な排出油等の防除措置を実施するためのものである。

第4 計画の修正

- 1 この計画は、毎年検討を加え、必要があると認められるときは、これを修正するものとする。
- 2 海防法第43条の6第2項に基づき、排出油等の防除に関する協議会からこの計画に

対して意見が述べられた場合は、これをこの計画に反映するものとする。

- 3 この計画を修正しようとするときは、関係行政機関の長又は関係地方公共団体の長の意見を聴くものとする。
- 4 この計画を修正したときは、速やかに、これを関係行政機関の長又は関係地方公共団体の長に通知するとともに、その要旨を公表するものとする。

第2編 海域編

第1章 海域の状況

第1 概況

当海域は、福井県、京都府、兵庫県、鳥取県及び島根県の1府4県沖合の日本海西部海域で、その海岸線の長さは1,800kmに及ぶ。この海岸線は景観に恵まれ、越前加賀海岸国定公園、若狭湾国定公園、丹後天橋立大江山国定公園、山陰海岸国立公園、大山隠岐国立公園に指定されている。

当海域の沿岸には、主要港(特定港)として、福井港、敦賀港(福井県)、宮津港、舞鶴港(京都府)、境港(鳥取県)、浜田港(島根県)の計6港が存在する。

西部地区の境港及び東部地区の福井港は、石油配分企業がタンク多数を有し、各地区への石油配分の基地となっており、また、福井港には、国家石油備蓄基地がある。さらに、 舞鶴には火力発電所の大型プロジェクトが進行中で、今後ますます船舶交通の増加することが見込まれる。

第2 油等保管設の状況

当海域の沿岸部には、容量500kl以上の油等保管施設で、油濁防止緊急措置手引書備え置き義務施設は31施設、有害液体汚染防止緊急措置手引書備え置き義務施設は2施設あり、このうち4施設が石災法に基づく、石油コンビナート等特別防災区域に指定されている福井地区に所在する。

(資料1) 油等保管施設一覧

(資料2) 油等保管施設位置図

第3 係留施設の状況

当海域における総トン数150トン以上のタンカーが着桟する係留施設で、油濁防止緊急措置手引書備え置き義務施設は54施設、有害液体汚染防止緊急措置手引書備え置き義務施設は3施設ある。

(資料3) 係留施設一覧

(資料4) 係留施設位置図

第4 船舶交通の状況

当海域の主要航路は、九管区の猿山岬、八管区の経ケ岬、隠岐海峡、出雲日御碕及び七管区の川尻岬をそれぞれ結ぶ線の沖合にあり、船舶交通は、経ケ岬沖及び出雲日御碕沖に集中しているが、この2海域は好漁場でもあって、漁船の操業が活発で、船舶交通が輻輳している。

(資料5) 通航船舶の状況

(資料6) 特定港入港船舶状況表

第5 海難の発生状況

当海域における最近3年間(平成16年~18年)の要救助海難発生隻数は、年間120隻前後で、これを海難種類別にみると油等の排出を伴うおそれのある衝突、乗揚げ及び転覆が全体の約半数を占めている。

(資料7) 要救助海難発生状況表

(資料8) 要救助海難発生状況図

第6 海洋汚染の発生状況

当海域における最近3年間(平成16年~18年)の油等による海洋汚染の発生状況は、 排出源別にみると船舶に係るものが多く、陸上保管施設に係るものは少ない。また、船舶 に係るものを原因別にみるとバルブ操作の誤り等器機等取扱い不注意によるもの及び故意 排出等によるものが多く、全体の約半数以上を占めている。

(資料9) 油等による海洋汚染発生状況表

(資料10) 油等による海洋汚染発生状況図

(資料11) 過去の代表的な大規模排出油等事故の概要

第7 気象・海象の状況

1 気象の状況

(1) 気温

年間平均気温を気象表(場所:敦賀、舞鶴、鳥取、境、西郷、浜田)で見ると 1 $3 \sim 15$ $\mathbb C$ である。月平均の最高気温は8月に現われ、敦賀で27.0 $\mathbb C$ 、西郷で25.7 $\mathbb C$ 、その他は26 $\mathbb C$ 台である。月平均の最低気温は境、舞鶴及び敦賀は1月に現われ、3.0 $\mathbb C$ 4.0 $\mathbb C$ 0、浜田、西郷及び鳥取では1月と2月は同温で浜田は5.5 $\mathbb C$ 、西郷と鳥取は3.7 $\mathbb C$ である。月平均気温の最高と最低の年較差は鳥取、舞鶴及び敦賀で約23 $\mathbb C$ 、西郷と境で約22 $\mathbb C$ 、浜田で約20 $\mathbb C$ である。

(2) 風向

冬季は西高東低の気圧配置に伴う北西の季節風が卓越する。3月に入ると季節風が しだいに衰え、4月ともなると南寄りの風がしだいに増加する。夏期は一般に南東~ 南の風が多いがそれほど強くなく、沿岸において局地風や海陸風の起きる所もある。

隠岐諸島付近では、時として、俗に「おちぎた」という北寄りの強風が吹く。これは、冬季、上層に寒気が進入したとき、日本海西部に発生した副低気圧(主低気圧の圏内に発生する小低気圧)が東南東へ進んで隠岐諸島付近を通過する際の北寄りの突風で、短時間ではあるが異常に強いことがある。

(3) 風速

冬季の強風は、低気圧の通過に伴う北西季節風の影響も加わって非常に強くなることがあり、風速は陸上で $15\sim20\,\mathrm{m/s}$ 、沿岸及び海上では $30\sim40\,\mathrm{m/s}$ に達する

こともある。この強風は台風に比べて吹く範囲が広いこと、吹き続ける時間が長いこと、急に吹き始めることなどが特徴である。

また、西高東低の気圧配置時に、突風や風向きの急変を伴う収束雲が発生することがある。

春季の強風は、北西の強風及び太平洋高気圧から日本海を通る低気圧に吹き込む南 寄りの強風があり、この風はフェーン現象を起こすことがある。

夏季の強風は、台風及び発達した低気圧によるものが殆どである。

秋季の強風は、日本の北方又は北日本を東へ進む発達した低気圧から、南西方へ延びる強い寒冷前線が通過することによって起きる。前線の東側では強い南西の風が吹き、西側では強い北西の風が吹いて気温が急に降下する。しかし、冬季の季節風のように長続きせず、半日ぐらいで治まる。

(4) 霧

日本海の霧は、日本海の表面を吹走する太平洋高気圧からの暖湿気塊や、オホーツ ク海高気圧からの冷湿気塊とリマン海流や対馬暖流などの寒・暖流との相互作用によって発生する。霧の発生日数は、冬季は極めて少なく、春季にはやや増加し、夏期に なると発生日数は最大となり、秋季になると減少していく。

沿岸や港湾に発生する霧は、対馬暖流や河川水による海面水温の変化、港湾をめぐる地形の影響により、外洋の霧よりも複雑である。管内の霧の多発地域として経ケ岬〜舞鶴湾が有名である。気象表(場所:敦賀、舞鶴、鳥取、境、西郷、浜田)から霧の年間発生日数を見ると、舞鶴(10月と11月が特に多い)が約31日と最も多く、西郷と境が10~13日、浜田、鳥取及び敦賀が1~3日と極めて少ない。

(5) 降水量

年間降水日数を気象表(場所:浜田、西郷、境、鳥取、舞鶴、敦賀)で見ると、敦賀が最も多く約170日、境、鳥取及び舞鶴は約150日、西郷は約140日、浜田が最も少なく約130日である。年間降水量も敦賀が最も多く約2,400mm、境及び鳥取は約1,900mm、浜田、西郷及び舞鶴では約1,700mmである。

四季別の降水日数は西郷、境、鳥取、舞鶴及び敦賀では年間降水日数の約50% が冬季に現われている。浜田では大きな特徴は見られない。

(資料12) 気候表

2 海象の状況

(1) 潮流

管内の潮汐は満潮と干潮の潮差が小さいため、各港湾の潮流は弱く0.2/ット以下が多く、0.5/ットを超えることは稀である。但し、境港においては地形の影響により、1/ットを超える東流が見られる。

(2) 海流

日本海の流れは、シベリヤ沿岸に沿って南下する寒流系のリマン海流と、対馬海峡を通過して東流する暖流系の対馬暖流とがあり、管内沿岸域の海況は対馬暖流の離接 岸や強弱により大きく影響される。 ベクトル平均速度・安定度で流れの方向を見ると、管内の沿岸沿いは四季を通じて 東方の流れが比較的安定しているが、沖合では流れの方向にばらつきがあるため安定 度が悪い。流速を見ると、暖流域の勢力が強まる夏季が冬季に比べ流速は強い。一般 に、対馬暖流の流速は夏季は1~2ノット、冬季は1ノット前後の流れがある。

(3) 海水温度

海水の表面水温は気温と同様に日変化及び月変化が見られる。日変化はその日の気象条件により大きく左右されるが、最高水温は15時頃、最低水温は6時頃に現われる。月変化の最高水温は8月頃に、最低水温は2月頃に現われる。

水温の最大値は7月と8月に30℃台、水温の最小値は1月と2月に5℃台である。

(4) 波高

日本海における高い波は冬季に発生することが多く、これは低気圧と北西季節風の影響によるもので、この場合の低気圧の移動速度は20~30m/s、風速は20m/s 程度で発生する風浪の周期は12秒以下、波高は約8mを超えることもある。

春と秋には波は低く継続時間も短いが、局地的な風によって沿岸部に高い波が発生する。夏には台風時を除いて一般的に静穏な日が続く。日本海沿岸の平均波高は0. $6\sim1$ mで周期は7秒である。2 m以上の波高が続く日数は、台風で約1 日、低気圧では約3 日程度である。

(5) うねり

太平洋側のような大きな「うねり」は認められず、低気圧の通過後に「うねり」が 残ることがあるが、消滅は早い。

(6) 潮汐

太平洋沿岸や有明海の潮の干満差は $1\sim3$ mと大きいが、日本海沿岸の潮の干満差は大潮時で $30\sim40$ cm、小潮時で10 cm前後と小さく干満差が1 mを超えることはない。

福井県の三国、京都府の舞鶴及び島根県の浜田の各月の平均潮位は3ヵ所とも各月の差は小さくほぼ同じぐらいの潮位である。月変化を見ると最高潮位は8月か9月に、最高、最低潮位は3月に現われ、その年較差は約40cmと小さい。

舞鶴験潮所における過去の最高潮位はジエーン台風(昭和25年9月3日)の時に海図の基準面上112cmを記録した。一方、最低潮位はシベリヤ高気圧(昭和39年4月8日)の影響で海図の基準面下74cmを記録した。

(資料13) 海流図

第8 漁業の状況

当海域における漁業は、沖合域においては大陸棚が大きく広がり、加えて対馬暖流による冷水性の渦動域の形成や、這い上がり冷水の存在により、あじ、さば、いわし等の好漁場が形成され、大中型まき網及び沖合底引網漁業が活発である。

一方、沿岸域は、海岸線が複雑に形成されており、天然の良港に恵まれ、あわび、さざえ、いわのりをはじめとする磯根資源が豊富であり、また、天然礁が多数存在し、さし網、小型定置網漁業が盛んである。

(資料14) 漁具定置箇所位置図

第9 海域の周辺環境

山陰海岸・若狭湾海域(島根県、鳥取県、兵庫県、京都府、福井県)海岸線は、西部から大山隠岐国立公園、山陰海岸国立公園、若狭湾国定公園及び越前加賀海岸国定公園に指定されるなど観光資源に恵まれ、また鳥獣保護区も設定されており、海水浴場については160ヶ所程ある。

また、発電所については、原子力7ヶ所、火力6ヶ所が存在する。

(資料15) 海域周辺環境図

第2章 排出油事故に伴う海洋汚染の想定

第1 排出油による海洋汚染の想定

排出油による海洋汚染の想定については、<想定の指針>に基づき、以下の通りきめる。 〔想定1〕

1 経ケ岬付近海域において、貨物船(15,000D.W.T)が他船と衝突し、燃料 タンクの船底部に破口を生じ、C重油1,000klが流出した。

2 排出油の漂流

流出油事故発生時における風・海潮流を次の2パターンとして排出油の漂流量を算出する。

風・海潮流	パターン	A	В	
風	向	西南西	北北東	
風	速	5 m/s		
流	向	東北東		
流	速	0. 7	ノット	

(資料16-1) 風・海潮流による排出油の移動距離表

3 海洋汚染の範囲

海洋汚染想の範囲は、次のように想定される。

(1) パターンAの場合(資料17-1-1)

排出油は風と海流の影響により略東北東方向に移動する。排出油事故発生から6時間後には経ケ岬北東方、30時間後には越前岬付近に至る。

(2) パターンBの場合(資料17-1-2)

排出油は風と海流の影響により略南東に移動する。排出油事故発生から18時間後には鷲埼崎沖合付近に達し、30時間後には成生岬沖合付近に達し、48時間後には 鋸埼沖合付近に至る。

〔想定2〕

- 1 福井港において、係留中のタンカー(200,000D.W.T)に他船が衝突し、 サイドタンクに破口を生じ、原油18,000klが流出した。
- 2 流出油事故発生時における風・海潮流を次の2パターンとして排出油の漂流量を算出する。

風・海潮流	パターン	A	В
風	向	南南東	北北西
風	速	5 m	/ s
流	向	北	東
流	速	0. 6	ノット

(資料16-2) 風・海潮流による排出油の移動距離表

3 海洋汚染の範囲

海洋汚染想の範囲は、次のように想定される。

(1) パターンAの場合(資料17-2-1)

排出油は風と海流により略北東方に移動する。排出油事故発生から24時間後には 金沢港沖付近に、48時間後には滝埼沖合付近に至る。

(2) パターンBの場合(資料17-2-2)

排出油は風と海流により略東方に移動する。排出油事故発生から2時間後には福井 港沖合に排出油の大半が漂着する。 _______

<海洋汚染想定の指針>

第1 排出油事故の発生場所の想定の考え方

油が著しく大量に排出される事故発生の蓋然性の高い海域は、原則として、次の海域を考えるものとする。

- 1 港内のタンカー係留施設付近海域
- 2 タンカーの常用航路である狭水道及びその周辺海域
- 3 外洋に面した沿岸域における貨物船の常用航路付近海域

第2 排出油規模の想定の考え方

排出油事故の態様としては、他船との衝突、岸壁との衝突、座礁又は底触、タンクの爆発、バルブ操作のミス、油保管施設からの流出によるもの等が考えられるが、油が著しく大量に排出された場合における排出油量の想定をするに当たっては、次のような前提のもとに行うものとする。

- 1 港内のタンカー係留施設付近海域
 - (1) 排出油事故の態様として、港内のタンカー係留施設付近海域におけるタンカーの他船との衝突に伴う排出油事故とする。
 - (2) 排出油事故発生船舶の大きさは、当該係留施設を利用する最大級のタンカーとする。
 - (3) 排出油量の算定に当たっては、排出油量が破口の位置及び大きさ等により大きく異なるので、当該タンカーの載荷重量の9%の油が排出されるものとする。((社)日本海難防止協会「昭和43年度大型タンカーによる災害の防止に関する調査研究完了報告書」参照)
- 2 タンカーの常用航路である狭水道及びその周辺海域
 - (1) 排出油事故の態様として、狭水道及びその周辺海域におけるタンカーの座礁又は底触に伴う排出油事故とする。
 - (2) 排出油事故発生船舶の大きさは、当海域を航行する最大級のタンカーとする。
 - (3) 排出油量の算定に当たっては、当該タンカーの最大センタータンク2個の底部に破口が生じたものとし、喫水線上の油が全量(最大センタータンク2個の全量の1/5) 排出されるものとする。
- 3 外洋に面した沿岸域における貨物船の常用航路付近海域
 - (1) 排出油事故の態様として、外洋に面した沿岸域の常用航路における貨物船の座礁又は底触に伴う排出油事故とする。
 - (2) 排出油事故発生船舶の大きさは、当海域を航行する最大級の貨物船とする。
 - (3) 排出油量の算定に当たっては、当該貨物船の燃料タンクの船底部に破口が生じ、積載燃料が全量排出されるものとする。

第3 排出油の漂流範囲の想定の考え方

実際の排出油の拡散状況をみると、海潮流、風等の外部条件による影響が極めて大きく、 排出直後はともかく、かなりの時間が経過した場合には、これらの外部条件による影響が 支配的になりうると考えられるので、排出油の漂流範囲を算出するに当たっては、海潮流 及び風による排出油の漂流によるものに限定するものとする。

1 海潮流及び風の影響

(1) 海流の影響

海流の流速による移動距離と同一とする。

(2) 潮流の影響

潮流は6時間の周期で流向が反転し、転流時から次の転流時までの6時間における潮流による排出油の移動距離は、最強流速で6時間流れた場合の70%とする。

(3) 風の影響

風による排出油の移動距離は、風速が 5 m/s 以上の場合は風速の 4 % とする。

2 移動距離の算出

海流の影響が大きく、潮流の影響が少ない海域においては、海流及び風の影響による 移動距離、潮流の影響が大きく、海流の影響が少ない海域においては、潮流及び風の影響による移動距離を、排出油事故発生時から6時間ごとで、最大48時間後まで算出するものとする。

この場合、海流及び風の流速は、海域における平均流速とし、潮流の流速は、海域における最強流速とする。ただし、平均風速が $5\,\mathrm{m/s}$ 未満の場合は $5\,\mathrm{m/s}$ とし、 $5\,\mathrm{m/s}$ 以上の場合は当該平均風速とする。

3 排出油の漂流、拡散及び経時変化における一般的事項

(1) 漂流及び拡散

海上に排出された油の拡散面は、実際には自然界の作用(海潮流、風、波等)の影響を受けて、円形ではなく不整形の状態を現出し、細長い帯状あるいは班状となって 断続的に漂流及び拡散する。

イ 海潮流の影響

海上に排出された油は、海潮流と同一方向にほぼ同一速度で移動するが、油が広範囲に排出された場合には、海潮流の流向及び流速が場所によって異なるので、時間の経過とともに流速の速い部分の油面と遅い部分の油面が離ればなれになる。

ロ 風の影響

風による排出油の移動については、風速が $7 \sim 8 \, \text{m/s}$ 程度の場合は、風速の $3 \sim 5 \, \%$ の速さで風の吹き去る方向に対し右へ $1 \, 0$ 度程度偏向して流されるが、風速が $4 \, \text{m/s}$ 程度以下に弱く海潮流が比較的速い場合は、排出油の漂流に対する風の影響は、ほとんどないといわれている。

ハ 波の影響

海上に排出された油は、波高、波長、その他波の形態等の影響により、海面を単に水平方向のみでなく、垂直方向をはじめとして様々の方向への拡散を余儀なくさ

れる傾向があるが、一般的には、波の油拡散に及ぼす影響を定量的に推測すること は困難である。

(2) 経時変化

イ 原油、重油等のいわゆる「黒物」と呼ばれているものは、軽油に近い性状を有するA重油を除き、粘度の高い残さ性の油分を多く含んでおり、海上に排出された場合には、一部の揮発性の高い成分が蒸発し、一層その粘性を増す。更に、時間が経過すると、風浪等によるかくはんを受けて油中に水が取り込まれ、非常に粘度の高いエマルジョン化したグリース状の油となる(いわゆるムース化)。

ロ ガソリン、灯油、軽油等のいわゆる「白物」と呼ばれているものは、揮発性があ り、かつ、粘度が低いため、海上に排出された場合には、比較的早期に広範囲にわ たって拡散し、そのほとんどが蒸発拡散する。

第4 有害液体物質の一般的事項

1 国内法上の分類

有害液体物質は、海防法第3条第3号において、「油以外の液体物質(液化石油ガスその他の常温において液体でない物質であって政令で定めるものを除く。)のうち、海洋環境の保全の見地から有害である物質(その混合物を含む。)として政令で定める物質であって、船舶によりばら積みの液体貨物として輸送されるもの及びこれを含む水バラスト、貨物艙の洗浄水その他船舶内において生じた不要な液体物質(海洋において投入処分をし、又は処分のため燃焼させる目的で船舶に積載させる液体物質その他の環境省令で定める液体物質を除く。)並びに海洋施設その他の海洋に物が流出するおそれのある場所(陸地を含む。)にある施設(以下「海洋施設等」という。)において管理されるものをいう。」と定義されており、その有害性等の度合により、X類、Y類及びZ類の3種類に分類されている。平成19年1月1日現在の物質数は、X類78、Y類466、Z類173の合計717物質及びこの混合物等で、このうち、我が国において海上輸送されている物質数は、全国内航タンカー海運組合集計の平成16年の年間輸送量によれば約140種類である。

また、これら有害液体物質の混合物及び有害でない物質等と有害液体物質との混合物については、混合物を構成する各物質の濃度を重量パーセントで表した数値に、各物質の有害性の程度に応じて環境大臣が定める係数(環境省告示)を乗じて得た数値の合計が、環境大臣の定める数値(環境省告示)2万5千以上である場合はX類、25以上2万5千未満である場合はY類、25未満である場合はZ類となる。

なお、MARPOL 7 3 / 7 8 条約付属書Ⅱで示す有害液体物質の分類は次のとおりである。

- ・X類 タンクの浄化作業又はバラストの排出作業により海洋に排出された場合に、 海洋資源又は人の健康に重大な危険をもたらし、海洋環境中への排出を禁止す ることが正当化される有害液体物質
- ・Y類 タンクの浄化作業又はバラストの排出作業により海洋に排出された場合に、 海洋資源又は人の健康に危険をもたらし、海洋環境中への排出を禁止すること が正当化される有害液体物質
- ・ Z 類 タンクの浄化作業又はバラストの排出作業により海洋に排出された場合に、

海洋資源又は人の健康に軽微な危険をもたらし、海洋環境中への排出を禁止することが正当化される有害液体物質

2 防除措置上の分類

我が国において、平成16年に海上輸送されている有害液体物質のうち、その性状等が「HNS海上流出事故対応データ・ベース(日本語版)」に取りまとめられている86品目について、防除の観点から海上に流出した場合の物質の挙動に着目した場合、次の基準により分類することができる。

(1) 比重による分類 (浮沈性)

- イ 海面を単に浮遊する物質は、その比重が $1.010 \,\mathrm{g/cm}$ 未満のもの(比重が海水より軽い)とする。
- ロ 海底へ常に沈降する物質は、その比重が 1.027 g/cm以上のもの(比重が海水より重い)とする。
- ハ 海中を漂流する物質は、比重が 1.0 1 0 g/c m 以上、 1.0 2 7 g/c m 未満のもの (比重が海水と同じ) とする。

(2) 蒸気圧による分類(揮散性)

- イ 蒸気圧が 20 mmHg (2.67 k Pa) 以上の物質 (短時間で大気中に蒸発する物質)
- ロ 蒸気圧が 2 0 mmHg (2.6 7 k Pa) 未満の物質(長時間にわたって海域に滞留する物質)

(3) 溶解度による分類(溶解性)

- イ 溶解性物質は、溶解度1g/100g水以上の物質(短時間で海中に溶解する物質)
- ロ 不溶解性物質は、溶解度 1 g/1 0 0 g水未満の物質(長時間にわたって海域に滞留する物質)

(資料18) 有害液体物質の挙動による分類

3 海上輸送品目及び輸送量

我が国において、船舶により海上輸送されているケミカルの品目数及び輸送量は、全国内航タンカー海運組合集計の平成16年の年間輸送量によれば、品目数約150種類、取扱量約1,623万トンであり、これを平成19年1月からの有害液体物質の分類、X類、Y類及びZ類に分類すると、次のとおりである。

全国取扱量	((t)	1

種類	取扱品目数	取扱量合計
X 類 物 質	1 5	1, 452, 765
Y 類 物 質	1 0 0	11, 665, 775
Z 類 物 質	2 9	1, 511, 203
上記以外の物質	7	1, 603, 863
合 計	1 5 1	16, 233, 606

なお、有害液体物質の輸送は、石油コンビナートが多く立地する東京湾、伊勢湾、瀬 戸内海の三海域に集中している。

(資料19) 有害液体物質の分類・品目別取扱量

4 流出分散経路

衝突等事故による船舶からの有害液体物質の流出形態は、破口の状態により異なり、 大別すると水面上からの流出及び水面下からの流出となる。いずれにしても浮遊性物質 はもちろん、沈降性又は海中漂流性物質が船舶から流出し、それが水面下からの場合で あっても、その流出物質の液及び蒸気が水面上(大気中)に何らかの影響を与えること なく、水中に沈降又は漂流することは極めて少ない。

- ・水面上の破口から海上へ流出する物質は、液層面と破口面の高さに相当する圧力で大 気中に流出され海面に落下する。
- ・分散過程における物質の挙動は、その物質の物理的性状(比重、粘度、蒸気圧、溶解 度等)、破口の状況(破口場所、大きさ、液面の高さ)等によって異なる。
- ・大気中に放出された物質は、層状に流出し、次第に飛沫状となり飛散し、あるいは蒸 発して有害性ガスの雰囲気を生じ拡散希釈する。
- ・液面上に落下した液体は、水中に一旦沈降する物質の液体比重、表面張力、界面張力 によって比重の重い物質でもその一部は水面上を漂流し、水面拡散液層を形成し、そ の間に蒸発、溶解を伴いながら徐徐に水中に沈降拡散する。

(資料20) 流出後の物質の分散経路

5 有害液体物質の危険性等

有害液体物質は、その種類・性状が多様であり、かつ引火性・毒性を有するものも多いため、これら物質の適切な事故処理を実施するためには、物質の諸性状について十分理解しておく必要がある。

(1) 物理的・化学的性状

有害液体物質は、各物質により比重、蒸気圧、粘度、溶解度、反応性等物理的・化 学的性状が異なるものである。

これらの物質の流出事故の場合、その性状を把握することにより、浮遊性、揮散性及び水溶性等の海上における物質の挙動が明らかになり対処するための基本的な判断材料となる。

(2) 火災・爆発の危険性

有害液体物質の多くは、可燃性危険物質であるため、火災・爆発の危険性を内在している。

火災・爆発危険性の評価については、引火点による場合が最も一般的であり、我が 国においては、消防法(昭和23年7月24日 法律第186号)の別表第1において、 「引火性液体」の性質をもつものとして第四類に類別され、同表備考において、以下 のとおり品名を定義している。

なお、「引火性液体」とは、液体(第三石油類、第四石油類及び動植物油類にあっては、一気圧において、温度二〇度で液状であるものに限る。)であつて、引火の危険性を判断するための政令で定める試験において引火性を示すものと定義している。

イ 特殊引火物

ジエチルエーテル、二硫化炭素その他一気圧において、発火点が一○○度以下のもの又は引火点が零下二○度以下で沸点が四○度以下のものをいう。

口 第一石油類

アセトン、ガソリンその他一気圧において引火点が二一度未満のものをいう。

ハアルコール類

一分子を構成する炭素の原子の数が一個から三個までの飽和一価アルコール (変性アルコールを含む。)をいい、組成等を勘案して総務省令で定めるものを除く。

二 第二石油類

灯油、軽油その他一気圧において引火点が二一度以上七〇度未満のものをいい、 塗料類その他の物品であつて、組成等を勘案して総務省令で定めるものを除く。

ホ 第三石油類

重油、クレオソート油その他一気圧において引火点が七〇度以上二〇〇度未満のものをいい、塗料類その他の物品であつて、組成を勘案して総務省令で定めるものを除く。

へ 第四石油類

ギヤー油、シリンダー油その他一気圧において引火点が二〇〇度以上二五〇度未満のものをいい、塗料類その他の物品であつて、組成を勘案して総務省令で定めるものを除く。

ト 動植物油類

動物の脂肉等又は植物の種子若しくは果肉から抽出したものであつて、一気圧に おいて引火点が二五〇度未満のものをいい、総務省令で定めるところにより貯蔵保 管されているものを除く。

これにより危険性の程度は判断できるが、危険性の評価を行う場合には、引火点のほか沸点、蒸気圧、爆発範囲等を精査する等、前広に検討することが必要である。

(3) 毒性危険

有害液体物質の多くは、程度の差はあるが人体に何らかの障害を与えるものである。 有害液体物質による人体への作用経路は、

- ・ 皮膚から吸収する場合(液の皮膚への付着)
- ・ 呼吸器から吸入する場合(物質の蒸気、ミストの吸入)
- 口から吸収する場合(物質をのみこむ)

の3つに大別されるが、通常においては呼吸又は皮膚からの吸収がほとんどであり、 特に中毒の多くは有害物質(発生蒸気)の吸入により発生している。

体内に吸収された有害物質は、その薬理作用から一般に原形質毒、神経質毒、血液 毒の3種類に分類されるが、実際には相互作用を呈し複雑である。

また、有害物質によって生体の機能障害を起こすことを一般に中毒というが、中毒 はその症状が現れる経過により、急性中毒、亜急性中毒及び慢性中毒に大別される。 急性中毒は有害物質を多量に摂取したときに発生し、症状は急に現れるが回復は早い。

第3章 排出油等防除資材等の保有状況と整備目標

第1 排出油等防除資材等の保有状況

当海域における関係行政機関等の保有する排出油等防除資材等は、次のとおりである。

1 排出油等防除資等

油回収船		1隻		8 9 kℓ/時
油回収装置		8基	計	3 7 0 kℓ/時
高粘度油回収ネット		16式		
オイルフェンス展張船		1隻		
オイルフェンス	57,	4 4 0 m		
油吸着材	30,	$9~0~2~\mathrm{kg}$		
油処理剤	72,	9641		
油ゲル化剤	7,	$964 \mathrm{k}\ell$		
	油回収船 油回収装置 高粘度油回収ネット オイルフェンス展張船 オイルフェンス 油吸着材 油処理剤 油ゲル化剤	油回収装置高粘度油回収ネットオイルフェンス展張船オイルフェンス1919191910101010111212	油回収装置8基高粘度油回収ネット16式オイルフェンス展張船1隻オイルフェンス57,440m油吸着材30,902kg油処理剤72,964ℓ	油回収装置8基計高粘度油回収ネット16式オイルフェンス展張船1隻オイルフェンス57,440m油吸着材30,902kg油処理剤72,964ℓ

2 その他

(1)	作業船	5	9隻
(2)	タグボート	1	3隻
(3)	廃油等処理施設		5施設

(資料21) 排出油等防除資材等保有状況

第2 排出油等防除資材等の整備目標

排出油等防除資材等の必要量については、事故の規模や状況等から決定される防除手法、 資材等の使用される環境によって左右され、一概に確定することはできないが、想定規模 の事故に対する整備目標について、一つの目安として<整備目標の指針>の考え方に沿っ て定めるものとする。

排出油の80%を油回収船等により回収し、残りの20%を油吸着材、油処理剤及び油ゲル化剤により回収又は処理するというパターンで排出油の防除作業を実施するものとすれば、第2章第1において想定した18,000klの排出油の防除のために必要な排出油防除資材等の数量の整備目標は、次のとおりとなる。

1 油回収船等

想定排出量の80%に相当する14, 400klの油を $2\sim3$ 日以内に回収するために必要な油回収船及び油回収装置の油回収能力の合計は、1時間当たり $400\sim600$ klである。

当海域における保有状況からみて、想定排出油量に対する油回収船等の整備目標を満たしているものと考えられる。

しかしながら、気象・海象条件等によっては、回収効率が低下することがあり、例えば仮に1/3程度に低下した場合を想定すれば、当海域での油回収能力では十分でない 事態が生じるが、そのような場合には、隣接海域等の他の海域からの動員で補うことに より対応するものとし、油のムース化が著しく進行した場合については、高粘度化した 油に対応可能な資材等の活用を図るものとする。

したがって、当海域においては、想定規模の事故に対して、他の海域からの動員の可能性について日頃から検討し、その確保に向けて努めるものとする。

さらに、当海域で保有する油回収船等についても、関係機関等との連携のもと、引き 続き増強を進めることが必要である。

2 油吸着材及び油処理剤

想定排出油量の20%に相当する3,600klの油を回収又は処理するために必要な油吸着材は157,500kg、油処理剤は450,000lである。

当海域における保有状況からみて、想定排出油量に対する油吸着材及び油処理材の整備目標を満たしていないものと考えられる。

想定した排出油量と同等規模の事故が実際に発生した場合は、隣接海域等の他の海域の保有する油吸着材及び油処理剤を調達することにより補う必要がある。

このため、事前に他の海域の排出油防除計画により油吸着材及び油処理材の保有状況を確認し、迅速に調達可能なものについて、関係管区海上保安本部と輸送方法等を検討しておく必要がある。

さらに、当海域で保有する油吸着材及び油処理剤についても、引き続き増強を進める ことが必要であり、このため、関係機関等との連携を図る必要がある。

3 オイルフェンス

想定の排出油の拡散を防止するために必要なオイルフェンスの量は、5,000mである。

当海域における保有状況からみて、想定排出油量に対するオイルフェンスの整備目標 を満たしているものと考えられる。

また、オイルフェンスを排出油事故発生場所付近の海域へ迅速に輸送し、かつ、展張するためにはオイルフェンスを常時搭載した船舶又はオイルフェンスの輸送・展張作業に従事する船舶、オイルフェンスの係止用錨等の十分な確保を図る必要がある。

なお、排出油等防除資材等については、迅速に動員することが可能なものと、何らかの理由から迅速に動員することに問題があるものがあること、また他の海域からの資材等の動員が必要になる場合も想定されることから、当海域においてはその資材等の状況を詳細に把握しておくことにより、事故時において迅速な資材等の動員が確保されるよう努めることが必要である。

<整備目標の指針>

第1 排出油防除資材等の数量

排出油防除資材等の数量の整備目標は、排出油事故の発生に伴い、まず、早期に排出源の周囲をオイルフェンスで包囲し、次いで、すでに拡散した排出油が更に広範囲にわたって拡散するのを防止するために、これをオイルフェンスで包囲あるいは誘導して、排出油の80%を油回収船等機械的回収により回収し、残りの20%を油吸着材及び油処理剤により回収又は処理するというパターンで排出油の防除作業を実施するものとした場合に必要な数量とする。

1 オイルフェンス

オイルフェンスの展張は、排出油事故発生から6時間後(外洋に面した沿岸域においては、12時間後)の拡散予想範囲について、当該排出油の全周に二重に展張(外洋に面した沿岸域においては、待ち受け二重展張)するとした場合に必要な数量とする。

2 油回収船等

排出油は、気象・海象の影響により2~3日のうちにエマルジョン化が相当進行し、非常に粘度が高くなってくる(ムース化の進行)ため、一般の低粘度油用の油回収船又は油回収装置では回収が困難となるので、2~3日以内で、ムース化が著しく進行する前に回収することが望ましい。従って、油回収船及び油回収装置の油回収能力の合計は、想定排出量の80%に相当する油を2~3日以内(1日12時間の作業時間として合計24時間~36時間)に回収するとした場合に必要な能力とする。なお、油回収船及び油回収装置の油回収能力については、排出油の種類及び性状、排出油の拡散に伴う油層厚の変化の状況、気象・海象の状況等によって異なることから、整備目標の評価は、資材等の性能値等の合計により行うものとする。

しかしながら、気象・海象によっては、波浪等の影響により油回収船又は油回収装置の回収効率が低下することも考慮する必要があり、他の海域からの動員の可能性を検討する必要や、油のムース化が著しく進行する前に回収できなかった場合には、高粘度化した油についても一定程度対応可能な資材等の活用を図る必要がある。

3 油吸着材及び油処理剤

油吸着材(油吸着能力は自重の10倍)及び油処理剤(処理能力は、通常型油処理剤で自容量の4倍、高粘度油用油処理剤で10倍、自己撹拌型油処理剤で自容量の20倍)の量は、想定排出油量の20%に相当する油を回収又は処理するために必要な量とし、油吸着材及び油処理剤でそれぞれ1/2ずつの油を回収又は処理するために必要な数量とする。

4 油ゲル化剤

排出油防除資材等の数量の算出に当たっては、前述の資材等の使用を前提としたが、

事故形態等により、複数の資材等の組合せ、あるいは、特定の資材等のみを使用せざる を得ない場合等もあるので、液体油ゲル化剤(油処理能力は自容量の3倍)又は粉末油 ゲル化剤(処理能力は自重の3倍)を含め、それぞれの資材等の性能等を良く理解した うえで、その整備を図っておく必要がある。

第2 排出油等防除資材等の性能

1 わが国が輸入している油のなかには、ミナス原油、大慶原油等の高粘度油があり、これらの油が海上に排出された場合には、短時間で流動性を失い、油塊状となる。

また、C重油も海上に流出後波浪等の影響を受けて経時変化し、同じように流動性を 失い、油塊状となる。

このため、このような油等の回収及び処理に適応できる排出油等防除資材等の開発等を促進する必要がある。

- 2 今後、新たに排出油等防除資材等を整備し、又は既存のものを更新する場合には、事故の形態、気象・海象の状況、地域の特性等を踏まえて、迅速に排出油等の防除措置が可能となるよう、質的な面でも向上を図っていく必要がある。
- 3 近年の技術革新により、他の分野で活用されている技術、資材等を排出油等の防除措置に利用することが有効な場合もあるので、広く活用可能な技術、資材等について調査・研究しておくものとする。

第3 有害液体物資対応の資材等

有害液体物質の防除は、物質の危険性について十分に認識した上で、その性状及び挙動を把握し、さらに海象・気象、現場海域及び周辺海域の状況等に応じ、最も有効かつ適切な方法で実施される必要がある。

一方、有害液体物質は、様々な物質が同時に輸送されていることもあることから、個々の物質ごとに必要となる資材等を備え付けておくことや整備量を事前に決めておくことはできないが、状況に応じた適切な防除措置を講じるために必要な種類のものが必要な数量だけ確保されていることが望ましい。

有害液体物質のそれぞれの特性に応じ、必要となる資材等は、次のようなものがある。

1 蒸発性物質

オイルフェンス、ゲル化剤、サンプリング資材、放水能力を有する船舶

2 海面浮遊性物質

オイルフェンス、サンプリング資材、回収資材、回収装置

3 海中漂流性物質

拡散防止資材 (シルトフェンス等)、サンプリング資材

4 沈降性物質

拡散防止資材(シルトフェンス等)、サンプリング資材、水中ポンプ、浚渫装置

6 溶解性物質

拡散防止資材 (シルトフェンス等)、サンプリング資材

これらの資材等の準備とともに、引火性や毒性を有する場合に備え、引火性ガス等の影響範囲を把握するための検知器、作業員の安全を確保するための防護衣・保護具、引火性

ガス等の発生を抑制するためのゲル化剤及び放水能力を有する船舶を整備する必要がある。

第4章 連絡及び情報の交換

第1 連絡

船舶又は海洋施設等からの大量の油等の排出があった場合について通報を受けたときは、 その情報及び対応に必要な情報を、地域防災計画、コンビナート防災計画、油濁防止緊急 措置手引書、有害液体汚染防止緊急措置手引書及び排出油等の防除に関する協議会等にお いて、予め定められた連絡網に従って関係機関等に連絡を行い、排出油等防除体制の早期 確立等を図るものとする。

第2 情報の交換

関係機関等と一体となって排出油等の防除のための諸活動を迅速かつ的確に実施するために、必要な情報の交換を図るものとする。

また、石災法に係る現地防災本部又は災対法に係る災害対策本部等が設置された場合は、 必要に応じ職員を派遣するとともに、これらの本部等との間における情報の交換体制をも 確立しておくものとする。

第3 通信連絡手段の確保

連絡及び情報の交換を円滑に行うため、携帯無線機の増強、防災行政無線、ファックス等の活用及び臨時電話回線の設置等により専用通信の手段の強化を図り、関係機関等との通信手段の確保に努めるものとする。

なお、排出油等防除活動を関係者が共同で行う場合の通信手段としては、防災相互通信 用無線局の利用が有効と考えられるので、関係機関等とも協力して、この無線局の無線設 備の整備について促進を図るものとする。

第4 連絡及び情報の交換

1 連絡及び情報の交換

排出油等事故発生時の連絡先及び排出油等の防除のために必要な情報の交換先は、資料22のとおりである。

その他、コンビナート防災計画、地域防災計画、油濁防止緊急措置手引書、有害液体 汚染防止緊急措置手引書及び排出油等の防除に関する協議会等における連絡系統図等を 活用して連絡及び情報の交換を行う。

2 通信連絡手段の確保

関係行政機関等の防災相互通信用無線局の保有状況は、資料23のとおりである。

第5章 排出油等の防除及び危険の防止

第1 排出油等の防除及び危険の防止

排出油等の防除及びこれに伴う危険の防止に関する措置等についての基本的な指針は、 以下のとおりである。

<排出油等の防除及びこれに伴う危険の防止に関する措置等についての基本的な指針>

1 初動措置

(1) 事故の調査及び分析・評価

迅速かつ的確な排出油等の防除措置を講ずるためには、まず、排出油等事故の状況等を迅速に調査し、その調査結果に基づき、分析・評価を行い、排出油等の量、排出油等の拡散方向及び拡散速度、調達可能な排出油等防除資材等の量その他の排出油等防除活動に必要な諸要件を判断し、沿岸海域環境保全情報(注)も参考にしながら、適切な排出油等防除方針を早急に確立するものとする。

なお、排出油等防除方針の決定にあたっては、関係機関等が参画する排出油等の防除 に関する協議会の会員等との連携を図るものとする。

(注) 油等汚染事故発生時に油等防除措置を効率的に実施するため、必要な諸情報をデータベース化し、これらの情報や油等拡散状況を海図データと合わせて電子画面表示化するためのシステム。

イ 事故の調査

排出油等事故発生の情報を入手したときは、更に詳細な情報を得るように努め、巡 視船艇、航空機を排出油等事故発生場所に派遣し、また、状況によっては、陸上から 職員を派遣して、次のような項目について調査を行わせるものとする。

- ① 事故発生の場所
- ② 船体破損部等の油等排出箇所の状況
- ③ 排出油等の種類及び性状並びに積載量及び積載状況
- ④ 油等の排出状況
- ⑤ 排出油等の拡散状況
- ⑥ 付近海域におけるガス濃度
- ⑦ 油等の防除のために講じた措置又は講じようとする措置
- ⑧ 備え付けている排出油等防除資材等
- ⑨ 市街地、港湾、工場施設、養殖漁場、定置網、海水浴場等の海域施設等との距離
- ⑩ 船舶交通の状況
- ① 水産動植物及び野生生物への影響
- ② 付近海域における気象・海象の状況

ロ 事故の分析・評価

事故の調査結果に基づき、その規模及び大要を分析し、的確に事故対応方針を決定するために、次の要件を加味して災害の発生及び拡大の程度等を評価するものとする。

- ① 排出油等の推定量及び引き続き排出されるおそれの有無
- ② 排出油等の漂流予測
- ③ 排出油等による被害及び影響の程度
- ④ 付近海域のガスの危険範囲
- ⑤ 排出油等防除資材等及び要員(専門家を含む。)の動員可能数

(2) 防除措置義務者等に対する指導及び指示

排出油等事故が発生した場合、排出油等事故による災害の発生及び拡大の防止のためには、応急措置を講ずべき船長等及び防除措置を講ずべき船舶所有者等の関係者の措置義務者の措置が迅速かつ的確に実施されることが必要不可欠な要件となる。従って、これらの措置義務者の措置の実施状況を判断し、必要な場合は、次の様な措置を講ずるものとする。

イ 応急措置義務者に対する指導

応急措置を講ずべき船長等に対しては、海防法に基づく次の措置が迅速かつ的確に 実施されるよう指導するものとする。

応急措置を講ずる必 要のある場合	措置義務者	措置の内容
大量の油等の排出があったとき	・ 船長又は施設の 管理者・ 排出の原因とな る行為をしたもの	次に掲げる排出油等防除措置のうち 有効かつ適切な措置であって措置義務 者が現場において講ずることができる もの ・ オイルフェンスの展張等による拡 散の防止 ・ 損壊箇所の修理等の引き続く油等 の排出防止 ・ 他のタンクへの残油等の移送 ・ 排出油等の回収 ・ 油処理剤その他の薬剤による処理
危険物である油等 が排出した場合であ って海上火災が発生 するおそれのあると き	同 上	引き続く危険物の排出の防止及び 排出された危険物の火災の発生の防 止のための応急措置現場付近にある者又は船舶に対し 注意を喚起するための措置

ロ 防除措置義務者等に対する指導

防除措置を講ずべき船舶所有者等に対しては、海防法に基づく次の措置が迅速かつ 的確に実施されるよう指導するものとする。

防除措置を講ずる必 要のある場合	措置義務者等	措置の内容
大量の油等の排出 があったとき ただし、応急措置 義務者の講ずる措置 のみによって確実に 排出等の防除がさ きると認められると きは除く	 船舶所有者 施設の設置者 排出の原因となる行為をした者の使用者 	次に掲げる排出油等防除措置のうち 有効かつ適切な措置 ・ オイルフェンスの展張等による拡 散の防止 ・ 損壊箇所の修理等の引き続く油等 の排出の防止 ・ 他のタンクへの残油等の移送 ・ 排出油等の回収 ・ 油処理剤その他の薬剤による処理 ・ 他の船舶又は他の施設への残油等 の移替え ・ 油等の蒸発の促進又は抑制 ・ 油等の分解の促進 ・ 汚染状況の把握その他の排出油等 防除の措置
大量の油等の排出のおそれがあるとき	船長又は船舶所 有者施設の管理者又 は設置者	油等の抜き取りその他油等の排出の防止のため必要な措置
危険物である油等 の排出のおそれがあ るとき	船長又は船舶所 有者施設の管理者又 は設置者	・ 油等の抜き取り ・ その他油等の排出の防止のため必要な措置

ハ 援助・協力者に対する指導

油等の排出が港内又は港の付近にある船舶から行われたものであるときは、次の者は、海防法に基づき、措置義務者が講ずべき措置の実施について援助し、又は措置義務者と協力して排出油等の防除のため必要な措置を講ずるよう努めなければならないが、これらの援助、協力が迅速かつ的確に実施されるよう指導するものとする。

- ① 当該港が当該排出された油等の船積港であるときは、当該油等の荷送人
- ② 当該港が当該排出された油等の陸揚港であるときは、当該油等の荷受人
- ③ 当該油等の排出が船舶の係留中に行われたときは、当該係留施設の管理者

ニ 防除措置義務者等に対する防除措置命令

防除措置義務者等が、ロの措置を講じていないと認められるときは、海防法に基づき、具体的な状況に応じ最も適切な防除措置を特定して、これを講ずるよう命ずるものとする。

ホ センターに対する指示等

緊急に排出油等の防除措置を講ずる必要がある場合において、二の防除措置命令を 発したにもかかわらず防除措置義務者等が、講ずべき措置を講じていないと認められ るとき、又は二の防除措置命令を発するいとまがないと認められるときは、海防法に 基づき、ロの措置のうち必要と認めるものを講ずべきことを、センターに対し指示す るものとする。

また、機動防除隊及び巡視船艇等により応急の防除措置を講ずるとともに、必要に応じ関係機関等に防除措置の実施等について要請を行うものとする。

(3) 危険防止措置等

排出油等事故の発生に伴い、火災、爆発等が発生するおそれがある場合には、危険防 止措置等を講ずるものとするが、これらの措置については5で触れることとする。

2 防除体制

(1) 大規模海難等対策本部の設置

排出油等の防除措置を一元的かつ効率的に実施するために、大規模海難等対策本部規則(昭和48年海上保安庁訓令第4号)に基づき、大規模海難等対策本部(以下「対策本部」という。)を設置するものとする。

(2) 関係機関等との調整

関係機関等が行う各種の措置が相互の有機的な連携の下に、一層迅速かつ効果的に実施されるため、密接に連絡を行うとともに、できるだけ早期に、関係機関等と対策会議を開催し、基本的対策について総合的な検討及び調整を行い、関係者間の意思の疎通を図るものとする。

対策の円滑な推進を図るため、防除措置義務者又はその代理人等(防除活動について その権限を委任された者)を対策本部にできるだけ常駐させ、対策方針の決定及びその 変更等を了解させ、その徹底を図るほか、排出油等事故発生船舶等の構造等に関する図 面の提出を求める等により、必要な情報の早期入手に努めるものとする。

なお、防災基本計画に基づき、「警戒本部」、「連絡調整本部」、「非常災害対策本部」及び「非常災害現地対策本部」が設置された場合については、その枠組みに従い関係機関等との調整を行うものとする。

3 排出油の防除作業要領

海上における排出油は、気象、海象等の自然条件によって大きく影響を受け、時間の経過とともに広範囲に急速に拡散され、防除活動も一層困難性を増すこととなる。

従って、防除作業を行うに当たっては、まず、排出油の拡散及び性状の変化の状況について確実な把握に努め、事後の適切な防除方針を決定するとともに、初動段階において有効な防除勢力の先制集中を図り、迅速かつ効率的に排出油の回収及び処理を実施するもの

とする。

また、防除作業は、排出源の早期制圧により引き続く油の排出の抑止に努め、すでに排出された油及び排出を抑えられなかった油については、オイルフェンス等により包囲あるいは誘導することにより拡散を局限し、油回収船、油回収装置、油吸着材、油ゲル化剤等により回収することを基本とするが、これにより難いときは、排出油の状況に応じ、油処理剤により処理するものとする。

(1) 排出油の拡散及び性状の変化の状況監視

巡視船艇を要所に配置し、必要に応じて航空機を出動させ、排出油の拡散及び性状の変化の状況について監視、報告させるほか、一般航行船舶、出漁船等からも関連情報を得るように努めるとともに、その情報の確認を行うものとする。

(2) 防除作業の手法

イ 引き続く油の排出防止

① 応急措置

a) ガス抜きパイプの閉鎖

タンク内への空気の流入を止め、タンク内の圧力を下げて、ヘッド差による油の 排出を防止するための方法で、破口が小さく、船底付近にあるときは、特に有効で ある。

なお、ガス抜きパイプは、タンク内の圧力を一定に保つブリーザーバルブの役目 を果たしているため、他のタンクとの共通使用の有無について留意する必要がある。

b) 船体の傾斜調整

バラストの移動により、船体を傾斜させて油の排出を防止する方法である。

c) 応急資材による閉塞

比較的破口の小さい場合に、その効果が期待できるもので、防水マット、木材等 により破口を閉鎖する方法である。

d) 他のタンク等への移送

パイプが連結されている他のタンク等への移送であり、もっとも確実な方法である。

② 瀬取り

引き続く油の排出を防止するため、破損タンク内の油を、他船又は他の施設へ移送するもので、事故船舶の移動、漂流等による新たな油の排出や、沈没による油の 湧出の発生を防止するためには、事故発生後直ちに瀬取り船を手配しなければならない。

ロ 排出油の拡散防止

排出油は、海潮流及び風の影響を受けて、通常、急速に拡散し、海洋汚染の範囲が拡大するため、排出油事故が発生した場合には、直ちに、排出源付近の海域にオイルフェンスを展張して排出油を包囲し、拡散を局限することが極めて重要である。

オイルフェンスの展張に当たっては、排出油事故の態様及び規模、排出油の拡散状況、気象・海象の状況、付近海域の状況等を検討し、オイルフェンスの展張位置、展張形態、展張量等について展張計画を定めたうえ、作業が迅速に実施されるよう努めるものとする。

なお、状況によっては、風浪や海潮流の影響を受けて、展張したオイルフェンスにより包囲した排出油がオイルフェンスの下側をくぐり抜けて流出する場合も予想されるので、必要に応じオイルフェンスを多重展張することとする。

また、オイルフェンスの標準的な展張形態は、第2図のとおりであるが、展張計画 を定めるに当たっては、この標準的な展張形態を適宜応用するものとする。

ハ 排出油の回収

排出油の回収方法としては、油回収船、油回収装置等を使用して回収する機械的回収、油吸着材、油ゲル化剤、高粘度油回収ネット等を使用して回収する物理的回収、その他グラブ船、バキュームカー、ひしゃく、バケツ、半切りドラム缶等を使用して回収する応急的、補助的な回収があり、排出油の防除作業に当たっては、排出油の種類及び性状、拡散に伴う油層厚の変化の状況、経時変化の状況、気象・海象の状況等に応じて、これらの回収方法のうち最も効果的な方法を用いるものとするが、この場合は、次の点に留意する必要がある。

- ① オイルフェンスで包囲あるいは誘導した排出油は、油回収船、油回収装置等を使用した機械的回収方法により回収することが最も望ましいが、状況によっては、これと相まって他の回収方法も併用して効果的に回収するよう努めるものとする。
- ② 油吸着材を使用して回収した場合、使用後の油吸着材は、風浪や海潮流の影響を受けて広範囲に散乱あるいは沈下するので、その回収方法について事前に十分検討しておく必要がある。
- ③ 油ゲル化剤は型式承認品等技術上の基準に適合するものでなければ使用してはならない。なお、油ゲル化剤の使用の際、特に次の点に留意するものとする。
 - a) 次の場合には、原則として使用してはならない。
 - 排出油が燃えている場合。
 - ・ 油ゲル化剤の使用によって生ずる凝固油の回収が、気象・海象条件その他の 事由によって極めて困難であると認められる場合。
 - ・ 油回収装置、油回収船で回収が容易に行われている場合。
 - b) 使用に際しては、次の事項に留意しなければならない。
 - i 液体油ゲル化剤
 - 原則として散布器を使用し、水で希釈して散布してはならない。
 - ・ 基準散布量は油量の約30%とし、凝固油の状態を確認しながら適当量散布すること。
 - 散布後は直ちに十分なかくはんを行うこと。
 - ・ できる限り風上から散布し、特に風が強い場合には、油面の近くで散布する等により、油ゲル化剤の散逸を防ぐこと。
 - 散布作業員は、顔面その他の皮膚の露出を避けること。
 - ゲル化した排出油は、すみやかにネット等により回収すること。
 - ii 粉末油ゲル化剤
 - ・ 原則として散布器を使用すること。
 - ・ 基準散布量は油量の約15~30%とし、凝固油の状態を確認しながら適 当量散布すること。

・ 原則としてオイルフェンスで包囲した油面に正確にかつ均一に散布する等により未反応の粉末油ゲル化剤の発生を防ぐとともに、できる限り風上から 散布する等により、粉末油ゲル化剤の散逸を防ぐこと。

また、未反応の粉末油ゲル化剤については、ネット、ポンプ等で極力回収 すること。

- 散布作業員は、顔面その他の皮膚の露出を避けること。
- ・ ゲル化した排出油は、すみやかにネット等により回収すること。

ニ 軽質油類の揮散抑制

一般にガソリン、ナフサ等の高揮発性油の広域流出油面は、引火の危険が大きく回収処理作業は困難を伴うが、オイルフェンスの展張により拡散を局限し、泡消火剤で油面を覆い、あるいは油ゲル化剤が安全に散布処理できる場合や、比較的揮発性の少ない灯油や軽油の場合には、油面を凝固することにより大幅に油の揮散量を押さえ、引火危険性の軽減、難燃化を図るものとする。

ホ 排出油の化学的処理

排出油の化学的処理とは、排出油に適当量の界面活性剤を散布、かくはんすると、油はその表面張力を弱め、油が水に包まれた形のエマルジョン化が進み、微細な油滴となって水中に分散することを利用して排出油を処理する方法である。

排出油の処理は、基本的には、ハの各回収方法によって排出油そのものを回収することが望ましいことであるが、排出油が広範囲にわたって拡散し、油層厚がうすくなる等その状況によっては、これにより難い場合があり、このような場合には、排出油による災害の発生及び拡大の防止のために必要な限度において、油処理剤を使用した化学的処理を行うものとする。なお、油処理剤は型式承認品等技術上の基準に適合するものでなければ使用してはならず、使用の際は特に次の点に留意するものとする。

- ① 次のいずれかに該当する場合を除き、使用してはならない。
 - a) 火災発生等による人命の危険または財産への重大な損害が発生し、又は発生するおそれがあるとき。
 - b) 他の方法による処理が困難な場合であって、油処理剤により、又は油処理剤を 併用して処理した方が海洋環境に与える影響が少ないと認められるとき。
- ② 次のいずれかに該当する場合には、①b)に該当する場合であっても、油処理剤を 使用してはならない。

ただし、特別な事情がある場合は、この限りではない。

- a) 排出油が、軽質油(灯油、軽油など)、動物油又は植物油であるとき。
- b) 排出油が、タール状又は油塊となっているとき。
- c) 排出油が、水産資源の生育環境に重大な影響があるとされた海域にあるとき
- ③ 油処理剤を使用する場合には、次の事項に留意しなければならない。
 - a) 原則として散布器を使用すること。
 - b) 散布量に注意し、特に過度の散布にならないこと。
 - c) 散布後は直ちにかくはんを行うこと。
 - d) できる限り風上から散布し、特に風が強い場合には、油面の近くで散布する等により、油処理剤の散逸を防ぐこと。

- e) 散布作業員は、顔面その他皮膚の露出を避けること。
- ④ 油処理剤の使用に当たっては、排出油をサンプリングし、乳化効果を確認すること。
- ⑤ 油処理剤の使用に当たっては、各地域ごとに関係地方公共団体、関係漁業者等と 事前に協議し合意に達しておく必要がある。

へ 回収した油の処理

回収した油の処理は、すみやかに集油船等により廃油処理施設、焼却施設等に輸送 して処理するものとするが、状況によっては、あらかじめ集積地を定め、ここに一時 保管し、逐次輸送して処理するものとする。

4 有害液体物質の一般的な防除措置

有害液体物質の排出事故が発生した場合、原因者は海上保安部署へ通報するとともに、 自ら又はセンター等へ委託し、防除措置を講じることとなる。海上保安庁は、巡視船艇、 航空機等を出動させ、排出状況の把握、船舶の航行制限、原因者・センター等防除措置実 施者への指導を行うとともに、原因者が必要な措置を講じていない場合は、センターに指 示して防除措置を行わせ、また、原因者のみでは防除が困難な場合など必要に応じて、自 ら排出された有害液体物質の防除を行うこととなる。

有害液体物質は、その種類が多く、その性状も物質によって異なること、物質によっては引火性や反応性あるいは毒性を有するものがあり、また、その反応にあたってはそれらが複合した場合、危険性に十分配慮する必要があることから、流出事故が発生した場合には、第三者への二次被害の発生防止及び防除作業に従事する者の安全確保等、人命の安全を第一として対応し、可能な限り海洋環境又は社会・経済活動への影響若しくは被害を防止ないしは極小化することを基本とする。

(1) 事故発生時の措置

有害液体物質の排出事故が発生した場合には、その性状、量、複合危険性等の情報を 正確に把握し、対処する必要があることから、速やかに次の措置を実施するものとする。 イ 事故船舶の船長、船舶所有者、運航者、代理店等又は海洋施設等の設置者に対し、 確認すべき事項。

- ① 事故等の発生日時、場所、船舶又は海洋施設等の名称、種類、総トン数、国籍、 事故等の概要
- ② 積載している又は貯蔵している有害液体物質の種類、名称、量、積付又は貯蔵の状況、排出された場合はその量及び拡がりの状況
- ③ 当該有害液体物質が容器入りである場合は、収納している容器の種類(直接収納する容器の種類及びこれらの容器を収納する貨物コンテナ等の種類の双方)、数量及び積付の状況
- ④ 有害液体物質による海洋汚染及び海上災害の防止のために現在とられている措置
- ⑤ 有害液体物質防除のための資材等の種類、量、現場投入に要する時間及び現場投入方法
- ⑥ サルベージ会社等の手配状況
- ⑦ 現場の気象・海象

- ⑧ 当該船舶に積載されている又は貯蔵されている有害液体物質の荷送人及び荷受人 の氏名又は名称並びに住所等
- ロ 巡視船艇・航空機・陸上職員等を現場に派遣する等して状況を調査するとともに、 事故船舶と早急に連絡をとり、人命及び船体の状況、有害液体物質の排出の有無又は 拡がりの状況、積付の状況、現在とられている措置、現場の気象・海象等に関する情報を速やかに収集する。
- ハ イ及び口により確認・収集した情報をもとに、「HNS海上流出事故対応データ・ベース (日本語版)」、その他参考資料、専門知識を有する者の助言等により、当該有害液体物質の性状及び危険性を把握するとともに、ガス検知等により危険性のある海域 (危険範囲)を指定し、防除方法等を判断する。
- ニ 二次災害発生のおそれのある場合は、速やかに次の措置を実施する。
 - ① 地方公共団体、漁業関係団体、海事関係団体等に事故の概要を通報すること。通報するにあたっては、排出され、又は排出のおそれのある有害液体物質の名称、性状等について正確に通報するとともに、現在の状況についても併せて通報する。
 - ② 特に災害が沿岸に及ぶおそれがある場合は、地方公共団体等の防災機関との連絡を密にする。
 - ③ 航行警報等により、また報道機関の協力を得て、付近船舶への周知・徹底を図るとともに巡視船艇・航空機により危険海域付近の警戒を実施する。また、必要に応じて、海防法及び港則法(昭和23年7月15日法律第174号)の定めるところにより火気使用の制限・禁止、航行制限・禁止等の措置を講ずる。
 - ④ 排出に係る船舶の所有者、船長等又は海洋施設等の管理者に対し、引き続く排出及び拡散の防止等海上防災対策実施のための措置を講ずるよう指導する。また、必要に応じ、センターに対する海上防災のための措置の委託を指導するとともに、有害液体物質の製造業者、産業廃棄物処理業者等に対し専門的知識・技能を有する者及び作業員の派遣並びに所要の資材等の提供の協力を要請させる等指導する。状況によっては、海防法の定めるところにより防除措置等を命ずる。

(2) 防除方法

有害液体物質はその性状等から海域に排出された場合の挙動により、蒸発性物質、海面浮遊性物質、海中漂流性物質、沈降性物質及び溶解性物質の5つに分類でき、また、事故発生海域が外洋であるか港内等の沿岸部であるかによって、二次被害発生の有無が判断できることから、これらの分類及び事故発生海域の区分により、次のとおり一般的な防除方法等に分けることができる。

イ 蒸発性物質

蒸発性の有害液体物質の流出事故に対しては、短期間で蒸発することから、物質の性質に応じ厳重な火気管理及び中毒防止を図りつつ蒸発促進により大気への拡散を促すこととなるが、港内等での事故に対しては、蒸発ガスによる二次被害を防止するため、ガスの蒸発抑制の措置を講じる必要がある。

① 外洋での事故の場合

外洋での事故の場合には、二次被害の発生等周囲への影響がないことから、必要 に応じてモニタリングを行い、実際に危険な範囲を特定し、船舶の接近防止措置等 を講じた上で、ガスの蒸発・拡散を促進するための放水等を行い、ガス及び液の自然 消滅を待つ。

② 沿岸部での事故の場合

蒸発ガスにより、二次被害発生のおそれがあることから、モニタリングを行い、 実際に危険な範囲を特定し、船舶の接近防止措置等を講じた上で、ガスの発生を抑制するため、ゲル泡消火剤の放射、高分子ポリマー又は粉末油ゲル化剤の散布を行い、モニタリングによりガスの発生がなくなったことを確認した後、ゲル化物を回収ネット等により回収する。

口 海面浮游性物質

浮遊性の有害液体物質の流出事故に対しては、物質の性質に応じ厳重な火気管理及び中毒防止を図りつつ蒸発促進及び水中溶解により大気又は海中への拡散をうながすこととなるが、長期にわたり水面に滞留する等海洋汚染あるいは付近海域の危険性が継続する等の場合には、原状回復のため防除処理が必要となる。

浮遊性物質が海面に流出したのちの水面上での拡散は非常に速く、その拡散過程では大気中への揮散及び海中への溶解を伴い、しかも液層は、連続した層を保ちながら拡散する膜拡散あるいは細粒化しながら拡散する粒子拡散等それぞれの物質により拡散の様態はさまざまである。

このような拡散過程において薄層化あるいは細粒化する流出物質を拡散状態のままで吸引、吸着等の物理的方法により回収処理することは極めて困難である。

したがって、危険ガス範囲、汚染区域を局限するとともに回収等の処理を容易にする ためには、流出物質の拡散を防止する措置を講じることが重要である。

この拡散防止に使用できる資材等、方法等については油の場合と同様に

- オイルフェンスによるせき止め
- ・ 水流による誘導

の方法が考えられ、閉鎖海域等平穏で海潮流の影響を受けないなどの良い条件下においては、有効であると思われることから、以下、拡散防止の手法について述べる。

オイルフェンスによる拡散防止

流出油の拡散を防止し、あるいは特定の海域への侵入を防止する資材等として 現在までに多種類のオイルフェンスが開発されている。

有 害液体物質に対する、オイルフェンスの使用法は、流出油の拡散防止と同様 の方法がとられるが、油と異なる点は、物質の海面拡散速度が極めて速いことで ある。

このため、オイルフェンスによる拡散防止措置を講じることが決定されたら、 直ちに作業に着手し短時間で、しかも液層が厚く拡散途中にある液層に対して展 張を行う等現場における流出状況に応じた臨機の措置が必要である。

・ 水流による拡散防止

作業船の消防ポンプによる棒状放水は、液の拡散面に直接放水することにより 液を攪拌し蒸発を促進させる手段として用いられるが、ここでは、拡散防止の手 段として利用しようとするものである。すなわち、拡散液面の外縁に沿って放水 を行うことにより水流を作り、回収処理に適した場所へ誘導することが可能であ る。この方法は、流出物質を封じ込める場所があり、気象海象状況が穏やかな場所等に有効な方法である。

更に、封じ込める場所には、陸岸の凹部、防波堤の屈曲部等が利用されるが、 その選定に当たっては、流出物質から発生する有毒ガスによる沿岸地域等への被 害が生じないような場所を選ぶ必要がある。

① 外洋での事故の場合

外洋での事故の場合には、二次被害の発生等周囲への影響がないことから、モニタリングを行い、実際に危険な範囲を特定し、船舶の接近防止措置等を講じた上で、必要に応じ、ガスの蒸発・拡散を促進するための放水又は攪拌等を行い、また、状況に応じては、ゲル泡消火剤等により拡散を制御しつつ、ガス及び液の自然消滅を待つ。

なお、流出物質の拡散範囲が沿岸に及ぶ可能性がある場合には、上記拡散防止措置を講じた上で、ガス及び液の自然消滅を待つ。

② 沿岸部での事故の場合

蒸発ガスにより、二次被害発生のおそれがあることから、拡散防止措置を行い、モニタリングにより実際に危険な範囲と特定し、船舶の接近防止措置等を講じた上で、ゲル泡消火剤の放射、高分子ポリマー又は粉末油ゲル化剤の散布により蒸発抑制、固化した後、ゲル化物等をオイルフェンスで包囲、油回収装置又は高粘度油回収ネット等により回収する。

また、オイルフェンスにより包囲・集積し、油吸着剤による回収の方法もあるが、物質の吸着は瞬間的であり、吸着後そのまま放置すると蒸発揮散するので、直ちに回収しなければ回収効率を低下させることとなり、回収後の油吸着材からのガスの蒸発は継続するので、直射日光をさけるとともに容器には蓋をしてガスの揮散を防止する処置が必要となる。

ハ 海中漂流性物質

海水と比重が等しい物質はその揮発性、溶解性により大気中への揮散及び海中への溶解を伴いながら海中を漂流、物資によっては海底に堆積するが、海流、潮流に流され相当の距離、海中を移動することもある。

① 外洋での事故の場合

外洋での事故の場合には、二次被害の発生等周囲への影響がないことから、必要に応じてモニタリングを行い、実際に危険な範囲を特定し、船舶の接近防止措置等を講じた上で、攪拌等により自然拡散を促進し、自然消滅を待つこととなる。

② 沿岸部での事故の場合

海中の漂流により二次被害発生のおそれがある場合には、モニタリングにより実際に危険な範囲を特定し、船舶の接近防止措置等を講じた上で、シルトフェンスにより拡散防止措置を行い、薬剤により中和又は無害化を行うこととなるが、薬剤がない場合にあっては、ポンプ等の回収装置により回収する。

蒸発ガスがある場合は、ゲル泡消火剤の放射、高分子ポリマー又は粉末油ゲル化剤の散布により蒸発抑制、固化した後、ゲル化物等を油回収装置又は回収ネット等により回収する。

二 沈降性物質

海水より比重の大きい沈降性物質はその揮発性、溶解性により大気中への揮散及び海中への溶解を伴いながら海底に沈降する。一般には海底の凹部、岩石の間等に滞留するものと考えられ、また、海流、潮流に流され相当の距離、海底を移動することもある。このため、荒天により海底が攪拌され、思わぬ場所で有害液体物質による危険が発生することも考えられる。また、海底の地形によって沈降の状況も変化し、更に、ヘドロの堆積した場所では沈降した物質がヘドロ中へ侵入することもある。

従って、海底に沈降した物質の所在の確認は非常に難しいが、方法としては、存在 推定位置の海底を遠隔採取装置によりサンプリングし、これを分析して拡散状況を判 定する方法、遠隔水中テレビカメラを使用して物質の所在を確認する方法等があり、 水深が許せば回収についても検討することとなる。

① 外洋での事故の場合

外洋での事故の場合には、二次被害の発生等周囲への影響がないことから、必要 に応じてモニタリングを行い、実際に危険な範囲を特定し、船舶の接近防止措置等 を講じた上で、自然消滅を待つ。

② 沿岸部での事故の場合

港内その他閉鎖的海域での事故の場合は、海潮流の影響もあまりなく海底に堆積していると考えられるので、可能な限り回収をすることとなるが、この場合、シルトフェンスにより拡散防止措置を講じた上で、ポンプ等の回収装置、浚渫機により回収する。しかし、それ以外の海域においては、岩礁等により現場に接近できないか、水深が深く浚渫機が使用できないなど回収が困難である場合が多く、必要に応じて危険海域の設定を行い、断続的にサンプリングを行い、物質の経年変化、自然拡散による危険性の減少を待つ。

無害化する薬剤が開発されている物質については、薬剤により無害化を図る。 蒸発ガスがある場合は、ゲル泡消火剤の放射、高分子ポリマー又は粉末油ゲル化剤 の散布により蒸発抑制、固化した後、ゲル化物等を油回収装置又は回収ネット等に より回収する。

ホ 溶解性物質

短時間で海水中に溶解することから、回収については困難な物質である。

① 外洋での事故の場合

外洋での事故の場合には、二次被害の発生等周囲への影響がないことから、必要 に応じてモニタリングを行い、実際に危険な範囲を特定し、船舶の接近防止措置等 を講じた上で、攪拌等による自然拡散を促進し、自然消滅を待つ。

② 沿岸部での事故の場合

二次被害発生のおそれがある場合には、モニタリングにより実際に危険な範囲を特定し、船舶の接近防止措置等を講じた上で、シルトフェンスにより拡散防止措置を行い、薬剤により中和又は無害化を行う。

蒸発ガスがある場合は、ゲル泡消火剤の放射、高分子ポリマー又は粉末油ゲル化剤の散布により蒸発抑制、固化した後、ゲル化物等を油回収装置又は回収ネット等により回収する。

5 危険防止措置等

(1) 危険防止措置

危険物である原油が排出した場合、原油には、一般的に、エタン、プロパン、ブタン、ペンタン等の常温気体分が含まれるため、引火性が強く、火災、爆発が発生するおそれがあり、また、これらの石油ガスは、人体に悪影響を及ぼすため、中毒症状をおこすこともある。

また、有害液体物質にも、引火性が強く、火災、爆発を発生するおそれのあるものや 発生するガスが人体に影響を及ぼし、中毒症状を起こすこともある。

従って、海上に排出された原油や有害液体物質の防除作業を実施するに当たっては、 火災、爆発及びガス中毒等の二次災害を防止するため、次の点に留意するものとする。 イ ガス検知器具により、石油ガス等の有無を確認し、引火の危険性及びガス中毒の危 険性からみた危険範囲を常に把握するとともに、必要に応じ、海防法第42条の5第 1項及び第3項の規定に基づき、火気の使用制限又は禁止、船舶の退去又は進入中止

ロ 火気の使用制限又は禁止、船舶の退去又は進入中止等の危険防止措置に関する必要 事項を現場付近の船舶、沿岸住民等に対し周知徹底すること。

なお、周知方法としては、次のような方法により、実施するものとする。

① 緊急通信、安全通信等により周知する。

等の危険防止措置を講ずること。

- ② 現場海域に出動中の巡視船艇、航空機により、訪船指導の他、拡声器、垂れ幕、通信筒の降下等の手段を用いて周知する。
- ③ 現場付近の海域を航行する船舶に関係する船会社、船舶代理店等の関係者を通じ て周知する。
- ④ 陸上から職員を派遣し、又は関係機関等を通じて周知する。
- ハ 有効な消防能力を有する消防船等を現場海域に待機させる等により、火災、爆発等 の緊急事態の発生に備えること。

(2) 船舶交通の危険防止措置等

油等の排出により、航路筋が閉塞される等により現場周辺の海域において船舶交通が 混雑し、あるいは、排出油等防除作業を実施している現場海域に防除作業とは無関係な 船舶が多数出入して新たな海難が発生する危険が生じ、あるいは、防除作業の円滑な実 施の妨げとなる場合がある。

このような場合、必要に応じ、海防法第39条の2又は同法第42条の8の規定に基づき、船舶の退去若しくは進入中止等又は船舶の航行制限若しくは禁止の措置を講ずるものとする。

(3) 白物の防除措置

ガソリン、灯油、軽油等のいわゆる「白物」と呼ばれるものは、引火性が強く、火災、 爆発の危険及び人体への影響が大きいため、排出された場合は、回収は非常に困難であ るとともに防除措置を講ずる場合も、厳重な注意が必要である。このうち、灯油及び軽 油の防除措置については、引火の恐れがなことが確認された場合は、重油等の黒物の防 除作業の手法により措置することができる。

ガソリンの防除措置については、次の方法で措置することが必要である。

- イ船のエンジンはもちろんのこと、付近のあらゆる火気を絶つ。
- ロ 付近の船舶等に対して、火気厳禁等の注意を喚起する。
- ハ ガス検知を実施して、引火及び中毒の危険範囲や退避の必要な範囲を把握するとと もに、これらの範囲内の船舶に対して移動を命じ又は航行の制限若しくは禁止を行う。
- = 可能であれば、オイルフェンスを安全な方法で展張し、危険な方向への広がりを防止する。
- ホ 止むを得ず危険範囲に近づく場合には、あらかじめ風向、風速等気象状況及び蒸気 の拡散状況をよく把握し、安全を確認する。
- へ 原則として、蒸発による危険の消滅を最優先とするが、状況に応じて有効であれば、 油吸着材又は油ゲル化剤により回収又は処理する方法もある。
- (4) 防除活動における防除実施者の危険防止等

防除作業を実施するにあたっては、必要に応じて保護具を着用する等、ガス中毒の防止等を図るとともに、防除作業が厳しい条件下でなされる場合においては、船体動揺及び油等による足場不良、防除資材等の重量物の取扱等に係る危険が伴うことについて十分留意する必要がある。

6 財産の処分

海防法第42条の規定に基づき、排出された著しく大量の油等により海洋が著しく汚染され、当該汚染が広範囲の沿岸海域において、海洋環境の保全に著しい障害を及ぼし、人の健康を害し、財産に重大な損害を与え、若しくは事業活動を困難にし、又はこれらの障害が生ずるおそれがある場合において、緊急にこれらの障害を防止するため排出油等の防除の措置を講ずる必要があると認められるときは、当該排出油等の防除の措置を講ずるため止むを得ない限度において、当該排出された油等が積載されていた船舶を破壊し、当該排出された油等を焼却するほか、当該排出された油等のある現場付近の海域にある財産の処分を行うものとする。

第2 排出油等の防除等にあたっての当海域の留意事項

1 初動措置

(1) 事故情報を入手した際は、油等の危険防止措置等を十分留意の上、巡視船艇・航空機により、可能な範囲において事故船舶の状況や排出油等の拡散状況等を調査するとともに、排出油等による被害状況等についても早急に確認する。

また、積極的に付近航行船舶からの情報収集に努める。

(2) 巡視船艇等による付近航行船舶への周知、注意喚起に併せ、第八管区海上保安本部 運用司令センターを通じ安全通信等を早急に実施する。

2 防除作業要領等

- (1) 排出油等事故発生時には、当海域内の海上保安部署に保管されている排出油等防除 資材等を有効活用するとともに、当海域内に所在するセンターの契約防災措置実施者 の保有する排出油等防除資材等を有効活用する。
- (2) 特に原油やガソリン等の危険物である油等の排出の場合においては、付近航行船舶等が火種となり海上災害又は爆発等の二次災害を起こす危険もある。

このため、ガス検知器具により危険範囲把握の調査を実施し、必要な措置を講ずる。

- (3) 漂流方向にある原子力発電所の取水口、漁業施設等特に保護を要する区域についてオイルフェンスを展張する等の漂着防止措置を直ちに実施出来るよう準備する。
- (4) 定置網や蓄養生け簀等漁業施設が設置されている海域では、油処理剤等の使用が制限されることもあることから、他の方法による排出油等の処理又は回収についても前広に準備する。
- (5) 排出油等事故により船舶交通の危険が生じるおそれがあるときは、必要に応じ船舶 交通を制限し又は禁止するものとする。

3 その他

当海域においては、ロシア、韓国、北朝鮮、中国等の多数の外国船舶が就航しており、これら船舶は、海域(港域)、気象、海象等の状況不慣れから走錨座礁事故等を起こし、二次災害として、油等の大量流出事故を発生させる蓋然性が高い。外国船舶に対しは、必要な指導を行い、当該事故防止等を図る。

第3編 外洋域における排出油等の防除対策

本編においては、外洋に面した沿岸域から領海を越え、排他的経済水域に至る日本周辺海域で起きる事故を対象とし、その際の油等防除対策を中心に定めるものとする。沿岸付近の事故については、既に定められた16海域の排出油等防除計画に基づき対処するものとするが、沿岸域であっても外洋に面した海域であれば、状況によって本編を参考にする。

第1 気象・海象の状況

海域の気象・海象状況については、各海域編で詳細に記述されている通りであるが、外 洋に面した北海道沿岸、日本海沿岸、本州沿岸、九州沿岸、南西諸島沿岸についての気象 ・海象の概要は次のとおりである。

1 北海道沿岸

冬季から春期にかけて出現する温帯低気圧については、長時間・広範囲にわたって猛威を振るい、その強さはしばしば台風並みになることもある。冬期の季節風が一般的に強い。11月から翌5月が多く、6月から9月は少ない。南岸東部及び東方諸島では、春・夏季に濃霧が多く発生、北部及び西岸では、冬季は吹雪の日が多い。また冬季には流氷による事故も発生する。

海流については、対馬暖流とそれから分岐する津軽暖流及び宗谷暖流、寒流系の親潮とサハリン東方の海流等がある。

2 日本海沿岸

シベリア及び中国大陸北部から来る温帯低気圧は、通常殊に11月から翌3月までの冬季の間に猛威を振るう。冬季に低気圧の中心が日本海を通り抜けてオホーツク海又は太平洋に出ると、日本海の東側では強風と吹雪を伴うことがある。また冬季は西高東低の気圧配置による北西の季節風が卓越する。このため冬場の日本海においては最大波高が4~6mに達するような荒天が相当程度見られる。霧は沿岸付近において4月~9月の間に多発する。海流については、シベリア沿岸に沿って南下する寒流系のリマン海流と対馬海峡を通過して北上する対馬暖流がある。

3 本州北岸・東岸

本州東岸の犬吠埼以北の沿岸で、特に金華山以北には、5月から8月に霧が発生することが多い。また12月から2月に台湾坊主と呼ばれる温帯低気圧が発生し、本州南岸沿いに東進しながら急速に発達し、東方洋上に去ることが多い。台風の最盛期8、9月に日本の外洋に面する海岸に大波がうち寄せてくることがある(土用波)。海流については、日本の南岸に沿って流れ、房総半島沖を通過し北上する黒潮、津軽海峡から太平洋に流入し、一部三陸沿岸を南下する津軽暖流、そのさらに沖合を南下する親潮がある。

4 九州沿岸

夏季から秋季にかけて、台風が九州沿岸に大きな影響を与えるが、九州を縦断または 北東進する台風は9月頃多く九州全体に影響を、九州西方海上を北上して対馬付近を通 過する台風は有明海や周防灘に高潮を起こす。 台湾近海で発生する低気圧である台湾坊主は、九州に近づくにつれ急速に発達して天気を急変させる。また九州の西方地域に置いては、冬季に寒冷前線に伴う突風が顕著である。霧は春季から夏季にかけて一般的に沿岸付近に発生する。海流については、南西諸島の北西側を北上し、九州南岸及び東岸を洗う黒潮本流と、九州西方を北上して日本海側に入る対馬暖流及び対馬暖流から分かれ黄海方面に向かう黄海暖流がある。

5 南西諸島沿岸

南西諸島は九州に比較して台風時期が長く、また回数が多い。台風が襲来または接近するのは4月から12月までの期間であるが、特に7月から9月にかけて最も多い。南西諸島においては、霧の発生は比較的少ないが、南大東島では多く、特に春季に多発する。海流については、黒潮が諸島の北西を北東に向かって流れている。

第2 排出油等防除資材等の整備状況

1 外洋での油等回収において一定程度対応可能な資材等の保有状況

外洋においては、特に冬の日本海側では気象条件が厳しく、現在世界で開発されている資材等の能力では、必ずしも全ての状況に対応できるわけではないが、荒天下において、又は時間経過により高粘度化した油等の回収について一定程度の対応が可能な資材等があり、ナホトカ号の事故等を踏まえて整備されている。その資材等の概要は、以下の通りである。

大型浚渫兼油回収船(総トン数3,500トン)1,000kl/時大型油回収装置250kl/時高粘度油回収装置(ブラシ式)25kl/時高粘度油回収装置(真空ポンプ)90kl/時高粘度油回収ネット外洋型オイルフェンス

(注)

- 1. 大型油回収装置は、かなり大型な機器であるため、あらかじめ船舶に搭載しておく のではなく、通常は陸上に保管し、事故発生時に民間の大型サルベージ船、海上保安 庁の搭載可能な巡視船等に搭載して使用するものである。
- 2. ここに掲げられている大型油回収装置は、現在開発されている世界の油回収装置の中で、外洋の荒天下状況においての対応、また高粘度化した油等への対応も一定程度可能であり、かつ回収能力も相当程度認められるものである。その他の資材等についても荒天下、高粘度油対応が一定程度可能である。しかしながら冬場の日本海においては最大波高が4~6mにも達するような荒天が相当程度見られるが、現在の資材等の開発状況から見て世界的にもこのような荒天下において対応できるものはない。
- 3. ここに表示されている油回収能力はメーカーの把握する性能値等であり、実際の作業で回収するのは水を含んだ油水等となる。なお、一般的に、外洋においては通常波浪等の影響により油回収船、油回収装置の油回収効率が著しく下がり、また事故発生から日数が経過するにつれ油が拡散することによりさらに効率が下がる。

第3 排出油等の防除及び危険の防止等

外洋は内湾と違い気象・海象の条件が厳しく、いったん油等流出事故が発生すれば、比較的短時間で広範囲に拡大することからできるだけ早期に対処することが望ましい。しかしながら、沿岸から遠く離れた海域で事故が発生した場合には、迅速な対処が重要であるとはいうものの、気象・海象条件等によっては事故現場への到達に長時間を要すること等を勘案する必要がある。一方日数がたつにつれ油等の拡散やムース化等により、回収の効率が低下するとともに回収自体も困難になる。したがって、事故が発生し、原因者が十分な防除措置を講じていない場合は、できる限り迅速に必要な資材等を投入する等により、早期に防除措置を開始できるように努めるものとし、油等がムース化等した場合には高粘度油対応の資材等を活用することにより防除処理を実施するものとする。

1 防除作業要領

外洋における油等流出事故の防除等については、原則として「第2編 第5章第1 排出油等の防除及びこれに伴う危険の防止」を基本とするが、沿岸から離れた外洋において油等防除活動を実施できる能力のある者は船舶の航行能力、排出油等防除資材等の能力等の点を考慮すれば限定されており、関係機関等の連携がより重要となることから、以下の点に留意しながら防除活動を実施するものとする。

(1) 事故の状況に応じた適切な防除処理方針の決定

内湾、沿岸での場合も同様であるが、防除手法には一定の型はなく、事故毎にその 状況に応じ適切に決定するものである。具体的には排出油等の漂流予測を行い、保護 水域あるいは、沿岸への排出油等の漂着あるいは汚染範囲等を推定した後、油等の種 類、量、拡散状況、気象・海象状況を考慮しながら必要な資材等を決定する等、その 状況に応じた迅速かつ的確な防除処理方針を早急に決定し、対応するものとする。

(2) センターの迅速な対応

センターは「第2 排出油等防除資材等の整備の状況」で示した大型油回収装置を保有していることから、事故発生の初期の段階から海上保安庁と連携をとりながら防除に当たることが必要である。海上保安庁は、事故の状況、防除の必要性に応じ、防除措置義務者にセンターへの防除措置の委託をするよう指導するとともに、防除措置命令を発するいとまがない場合等においては、センターに対して防除措置を講ずるよう海防法に基づく指示をする。なお、防除義務のない領海外の外国船舶についても、センターに対して必要な防除措置を講ずるよう指示することが海防法上可能となったことから、このような場合についても必要に応じ指示を行うものとする。

(3) 国土交通省港湾局等関係機関等への要請

関係機関等に対して、必要に応じその能力に応じた油等防除措置の実施を迅速に要請することとする。特に、国土交通省港湾局の保有する大型浚渫兼油回収船については、荒天下の気象条件で一定程度対応可能であること、またその回収能力の大きさからもその有効な活用がなされるように、適切な要請を行うものとする。

(4) 関係機関等との連携 (大型油回収装置の活用)

大型油回収装置については、搭載できる船艇が限られることから、日頃から関係機関等と連携を図り、事故発生後速やかに当該装置を搭載できる海上保安庁の巡視船、 民間サルベージ船等に搭載し、迅速な防除作業を実施する。また、海上保安庁及びセ ンターは、大型油回収装置を保有する関係機関等と日頃から緊密な連携を図ることにより、事故時の大型油回収装置の有効な活用を図ることができるようにする。

(5) 高粘度油回収装置等の活用

大型油回収装置以外の資材等についても、高粘度油回収装置は外洋での対応が一定 程度可能であり、ムース化等した油等にも対応できるので、その活用を図ることとす る。

また、油回収ネットによる回収は、荒天下においてもある程度有効であることから、 状況に応じて実施する。

(6) 資材等の迅速な輸送

大型油回収装置、高粘度油回収装置等は車両による陸送が可能であることから、必要に応じて陸送による移動と、それを搭載可能巡視船を始めとする船舶の運航を連携することにより、同資材等の迅速な事故現場への投入を図るものとする。

(7) 航空機による油等の漂流監視等

排出油等の状況把握については、航空機による広域的監視が有効であり、作業船艇 との連携を図りつつ船艇を油等の漂流現場へ誘導する等、航空機の一層の効率的な運 用を図るものとする。

(8) オイルフェンスの展張

オイルフェンスの展張方法は、事故の状況等によって様々であり、一概には決められないが、一般的には外洋では気象・海象が厳しく、オイルフェンスを展張して拡散防止を図ることは困難な場合が多く、また、波浪中ではオイルフェンスの滞油能力が著しく低下することから、一例として油回収装置等による機械的回収の効果を高めるために油層等を厚く誘導する使用方法(第3図)が考えられる。

(9) 油処理剤等の散布

現在の回収船、回収装置の能力では、外洋における気象・海象によっては、そもそも回収作業を実施することが物理的に不可能であったり、オイルフェンスの展張による油等の拡散の防止の効果がない場合は、時間が経過するにつれ、油等が拡散し、沿岸へ漂着すること等により被害が甚大になる恐れがあるので、ムース化等する前に必要に応じ油処理剤等の散布を実施するものとする。

2 連絡及び情報の交換等

連絡及び情報の交換については、「第2編第4章連絡及び情報の交換」を基本とするが、特に外洋域で排出油等事故が発生し、被害が広域化する場合については、大型油回収装置等の資材等の迅速な出動を可能とするような情報連絡体制を確立しておくことが必要である。このため、大型油回収装置等を保有しているセンターは、関係機関等と平時から緊密な連携をとり、大型油回収装置等の効率的な管理・運用等について情報の交換等を行うものとする。